Visualization and analysis of SCImago Journal & Country Rank structure via journal clustering

Gómez-Núñez, Antonio Jesús, Vargas-Quesada, Benjamín, Batagelj, Vladimir, Moya-Anegón, Félix, Chinchilla-Rodríguez, Zaida. (2016). Visualization and analysis of SCImago Journal & Country Rank structure via journal clustering. Aslib Journal of Information Management, 68(5), 607-627
PublishedSep 2016

The purpose of this paper is to visualize the structure of SCImago Journal & Country Rank (SJR) coverage of the extensive citation network of Scopus journals, examining this bibliometric portal through an alternative approach, applying clustering and visualization techniques to a combination of citation-based links. Design/methodology/approach:Three SJR journal-journal networks containing direct citation, co-citation and bibliographic coupling links are built. The three networks were then combined into a new one by summing up their values, which were later normalized through geo-normalization measure. Finally, the VOS clustering algorithm was executed and the journal clusters obtained were labeled using original SJR category tags and significant words from journal titles. Findings: The resultant scientogram displays the SJR structure through a set of communities equivalent to SJR categories that represent the subject contents of the journals they cover. A higher level of aggregation by areas provides a broad view of the SJR structure, facilitating its analysis and visualization at the same time. Originality/value: This is the first study using Persson’s combination of most popular citation-based links (direct citation, co-citation and bibliographic coupling) in order to develop a scientogram based on Scopus journals from SJR. The integration of the three measures along with performance of the VOS community detection algorithm gave a balanced set of clusters. The resulting scientogram is useful for assessing and validating previous classifications as well as for information retrieval and domain analysis.